Mixed-Bed Regeneration (part 2)
During the regeneration step, it is important to maintain the cation and anion resins at their proper volume. If this is not done, the resin interface will not occur at the proper place in the vessel, and some resin will be exposed to the wrong regenerating solution. It is also important to realize that if the ion exchanger has been involved with radioactive materials, both the backwash and the regenerating solutions may be highly radioactive and must be treated as liquid radioactive waste.
The next step is the slow rinse step, shown in Figure 14d, in which the flow of dilution water is continued, but the caustic and acid supplies are cut off. During this two-direction rinse, the last of the regenerating solutions are flushed out of the two beds and into the interface drain. Rinsing from two directions at equal flow rates keeps the caustic solution from flowing down into the cation resin and depleting it.
In the vent and partial drain step, illustrated in Figure 14e, the drain valve is opened, and some of the water is drained out of the vessel so that there will be space for the air that is needed to re-mix the resins. In the air mix step, (Figure 14f) air is usually supplied by a blower, which forces air in through the line entering the bottom of the ion exchanger. The air mixes the resin beads and then leaves through the vent in the top of the vessel. When the resin is mixed, it is dropped into position by slowly draining the water out of the interface drain while the air mix continues.
In the final rinse step, shown in Figure 14g, the air is turned off and the vessel is refilled with water that is pumped in through the top. The resin is rinsed by running water through the vessel from top to bottom and out the drain, until a low conductivity reading indicates that the ion exchanger is ready to return to service.